Equatorial Convectively Coupled Waves in a Simple Multicloud Model

Author:

Khouider Boualem1,Majda Andrew J.2

Affiliation:

1. Department of Mathematics and Statistics, University of Victoria, Victoria, British Columbia, Canada

2. Department of Mathematics and Center for Atmosphere/Ocean Sciences, Courant Institute, New York University, New York, New York

Abstract

Abstract Linear stability results for the multicloud model recently developed by the authors on an equatorial beta plane are presented here. The linearized equations, about a realistic radiative–convective equilibrium (RCE) are projected in the meridional direction via a Galerkin truncation procedure based on the parabolic cylinder functions. In a suitable parameter regime, the multicloud model exhibits convectively coupled Kelvin, M = 0 eastward (Yanai), and M = 1 westward inertia–gravity waves, unstable at the synoptic scales in agreement with the outgoing longwave radiation (OLR) spectral peaks observed by Wheeler and Kiladis. The horizontal wave structure and vertical wavenumber of the unstable waves qualitatively match those of the rotating equatorial shallow water waves but with a reduced phase speed, as in the observations. More importantly, they exhibit the same self-similar front-to-rear vertical tilt in the zonal winds, temperature, and heating fields as observed by Kiladis and colleagues. Similar to the case without rotation (from earlier work) a wave life cycle is identified, once again demonstrating the crucial role, played by congestus clouds and moisture, of preconditioning and moistening prior to deep convection and of triggering and maintaining the instability. When the troposphere is excessively dry, the convective wave instability fades out and an instability of low-frequency modes moving in both eastward and westward directions takes place. The eigenstructure of the low-frequency modes projects heavily on the congestus and moisture components and exhibits a quadruple vortex configuration reminiscent of Rossby waves with strong meridional convergence of warm and moist air toward the equatorial belt, suggesting a moistening and preconditioning role resembling the congestus standing mode seen in the case without rotation.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3