A New Algorithm for Low-Frequency Climate Response

Author:

Abramov Rafail V.1,Majda Andrew J.2

Affiliation:

1. Department of Mathematics, Statistics and Computer Science, University of Illinois at Chicago, Chicago, Illinois

2. Department of Mathematics, and Center for Atmosphere–Ocean Science, Courant Institute of Mathematical Sciences, New York University, New York, New York

Abstract

Abstract The low-frequency response to changes in external forcing for the climate system is a fundamental issue. In two recent papers the authors developed a new blended response algorithm for predicting the response of a nonlinear chaotic forced-dissipative system to small changes in external forcing. This new algorithm is based on the fluctuation–dissipation theorem and combines the geometrically exact general response formula using integration of a linear tangent model at short response times and the classical quasi-Gaussian response algorithm at longer response times. This algorithm overcomes the inherent numerical instability in the geometric formula arising because of positive Lyapunov exponents at longer times while removing potentially large systematic errors from the classical quasi-Gaussian approximation at moderate times. Here the new blended method is tested on the low-frequency response for a T21 barotropic truncation on the sphere with realistic topography in two dynamical regimes corresponding to the mean climate behavior at 300- and 500-hPa geopotential height. The 300-hPa regime has robust strongly mixing behavior with a nearly Gaussian equilibrium state distribution, whereas the 500-hPa regime is weakly chaotic with slowly decaying time autocorrelation functions and strongly non-Gaussian climatology. It is found that the blended response algorithm has significant skill beyond the classical quasi-Gaussian algorithm for the response of the climate mean state and its variance. Additionally, the predicted response of the T21 barotropic model in the low-frequency regime for these functionals does not seem to be affected by the model’s structural instability. Thus, the results here suggest the use of the fluctuation–dissipation theorem–based blended response algorithm for more complex nonlinear geophysical models.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 44 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3