Abstract
AbstractWe consider a class of dissipative stochastic differential equations (SDE’s) with time-periodic coefficients in finite dimension, and the response of time-asymptotic probability measures induced by such SDE’s to sufficiently regular, small perturbations of the underlying dynamics. Understanding such a response provides a systematic way to study changes of statistical observables in response to perturbations, and it is often very useful for sensitivity analysis, uncertainty quantification, and improving probabilistic predictions of nonlinear dynamical systems, especially in high dimensions. Here, we are concerned with the linear response to small perturbations in the case when the time-asymptotic probability measures are time-periodic. First, we establish sufficient conditions for the existence of stable random time-periodic orbits generated by the underlying SDE. Ergodicity of time-periodic probability measures supported on these random periodic orbits is subsequently discussed. Then, we derive the so-called fluctuation–dissipation relations which allow to describe the linear response of statistical observables to small perturbations away from the time-periodic ergodic regime in a manner which only exploits the unperturbed dynamics. The results are formulated in an abstract setting, but they apply to problems ranging from aspects of climate modelling, to molecular dynamics, to the study of approximation capacity of neural networks and robustness of their estimates.
Funder
Office of Naval Research
Office of Naval Research Global
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Computational Mathematics,Mathematics (miscellaneous),Theoretical Computer Science
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献