On the Zonal Structure of the North Atlantic Oscillation and Annular Modes

Author:

Gerber Edwin P.1,Vallis Geoffrey K.2

Affiliation:

1. Department of Applied Physics and Applied Mathematics, Columbia University, New York, New York

2. GFDL, and Princeton University, Princeton, New Jersey

Abstract

Abstract The zonal structure and dynamics of the dipolar patterns of intraseasonal variability in the extratropical atmosphere—namely, the North Atlantic Oscillation (NAO) and the so-called annular modes of variability—are investigated in an idealized general circulation model. Particular attention is focused on the relationships linking the zonal structure of the stationary waves, synoptic variability (i.e., the storm tracks), and the zonal structure of the patterns of intraseasonal variability. Large-scale topography and diabatic anomalies are introduced to modify and concentrate the synoptic variability, establishing a recipe for a localized storm track. Comparison of the large-scale forcing, synoptic variability, and patterns of intraseasonal variability suggests a nonlinear relationship between the large-scale forcing and the variability. It is found that localized NAO-like patterns arise from the confluence of topographic and diabatic forcing and that the patterns are more localized than one would expect based on superposition of the responses to topography and thermal forcing alone. The connection between the eddy life cycle of growth and decay and the localization of the intraseasonal variability is investigated. Both the termination of the storm track and the localization of the intraseasonal variability in the GCM depend on a difluent region of weak upper-level flow, where eddies break and dissipate rather than propagate energy forward through downstream development. The authors' interpretation suggests that the North Atlantic storm track and the NAO are two manifestations of the same phenomenon. Conclusions from the GCM study are critiqued by comparison with observations.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference28 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3