Radar-Based Quantitative Precipitation Estimation for the Cool Season in Complex Terrain: Case Studies from the NOAA Hydrometeorology Testbed

Author:

Zhang Jian1,Qi Youcun2,Kingsmill David3,Howard Kenneth1

Affiliation:

1. NOAA/OAR/National Severe Storms Laboratory, Norman, Oklahoma

2. Nanjing University of Information Science and Technology, Nanjing, China, and Cooperative Institute for Mesoscale Meteorological Studies, University of Oklahoma, and NOAA/OAR/National Severe Storms Laboratory, Norman, Oklahoma

3. Cooperative Institute for Research in Environmental Science, University of Colorado, and NOAA/OAR/Earth System Research Laboratory, Boulder, Colorado

Abstract

Abstract This study explores error sources of the National Weather Service operational radar-based quantitative precipitation estimation (QPE) during the cool season over the complex terrain of the western United States. A new, operationally geared radar QPE was developed and tested using data from the National Oceanic and Atmospheric Administration Hydrometeorology Testbed executed during the 2005/06 cool season in Northern California. The new radar QPE scheme includes multiple steps for removing nonprecipitation echoes, constructing a seamless hybrid scan reflectivity field, applying vertical profile of reflectivity (VPR) corrections to the reflectivity, and converting the reflectivity into precipitation rates using adaptive Z–R relationships. Specific issues in radar rainfall accumulations were addressed, which include wind farm contaminations, blockage artifacts, and discontinuities due to radar overshooting. The new radar QPE was tested in a 6-month period of the 2005/06 cool season and showed significant improvements over the current operational radar QPE (43% reduction in bias and 30% reduction in root-mean-square error) when compared with gauges. In addition, the new technique minimizes various radar artifacts and produces a spatially continuous rainfall product. Such continuity is important for accurate hydrological model predictions. The new technique is computationally efficient and can be easily transitioned into operations. One of the largest remaining challenges is obtaining accurate radar QPE over the windward slopes of significant mountain ranges, where low-level orographic enhancement of precipitation is not resolved by the operational radars leading to underestimation. Additional high-resolution and near-surface radar observations are necessary for more accurate radar QPE over these regions.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3