Characteristics of Stochastic Variability Associated with ENSO and the Role of the MJO

Author:

Batstone Crispian1,Hendon Harry H.2

Affiliation:

1. School of Mathematics, University of East Anglia, Norwich, United Kingdom

2. Bureau of Meteorology Research Centre, Melbourne, Australia

Abstract

Abstract To shed light onto the possible role of stochastic forcing of the El Niño–Southern Oscillation (ENSO), the characteristics of observed tropical atmospheric variability that is statistically uncoupled from slowly evolving sea surface temperature (SST) are diagnosed. The Madden–Julian oscillation (MJO) is shown to be the dominant mode of variability within these uncoupled or “stochastic” components. The dominance of the MJO is important because the MJO generates oceanic Kelvin waves and perturbs SST in the equatorial Pacific that may feed back onto the El Niño–Southern Oscillation. The seasonality present in the uncoupled zonal stress (maximum in austral summer), which reflects the seasonality of MJO activity, is also transmitted to the eastern Pacific thermocline variability by these Kelvin waves. Hence, the MJO component of the uncoupled stress could plausibly contribute to the observed phase locking of ENSO to the seasonal cycle. During an El Niño event, maximum uncoupled zonal stress variance shifts eastward from the western Pacific along with the coupled surface westerly wind and warm SST anomalies. The MJO accounts for less than half of this low-frequency behavior of the uncoupled stress but accounts for nearly two-thirds of the resultant thermocline variability. The uncoupled zonal stress also exhibits weak, westerly anomalies in the western Pacific some 8–10 months prior to El Niño, which is mostly accounted for by the low-frequency (period ≫ 50 days) behavior of the MJO. This low-frequency behavior possibly explains why observed El Niño variability is recovered when weakly damped models are forced with similar estimates of observed stochastic zonal stress.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 37 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3