Two Types of Mid-High-Latitude Low-Frequency Intraseasonal Oscillations near the Ural Mountains during Boreal Summer

Author:

Zhu Tao1,Yang Jing12

Affiliation:

1. a State Key Laboratory of Earth Surface Processes and Resource Ecology/Key Laboratory of Environmental Change and Natural Disaster, Faculty of Geographical Science, Beijing Normal University, Beijing, China

2. b Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, China

Abstract

AbstractTwo types of mid-high-latitude low-frequency intraseasonal oscillations (LF-ISOs), featuring eastward and westward propagation, have been identified over the Eurasian continent in the past 37 summers (1982–2018). The eastward and westward propagating modes commonly have a dominant periodicity of 30–50 days near the Ural Mountains (UM) but have different origins and evolutions. The eastward propagating LF-ISO initiates over eastern North America, migrates northeastward across northeastern North America–western North Atlantic, central North Atlantic, western Europe, and the UM, then propagates southeastward to northwestern and eastern China, which is the Atlantic-Eurasian continental mode. In contrast, the westward propagating mode is quasi-circumpolar, initiating over the East Siberian Sea and moving southwestward across the UM and northern Europe and eventually reaching Greenland and the Canadian Arctic Archipelago. These two mid-high-latitude LF-ISOs are accompanied by significant tropical intraseasonal variations with evident tropical–extratropical interactions. Meanwhile, these two LF-ISOs have different decadal preferences before and after 2000, which are ascribed to the decadal change of both intraseasonal efficient kinetic energy obtained from the mean flow over their genesis region and their background flow associated with the North Atlantic Oscillation/Arctic Oscillation decadal change. This study deepens the understanding of subseasonal variations for mid-high latitudes and subseasonal prediction sources for low-latitude regions.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3