An Assessment of the Performance of the Operational Global Ensemble Forecast Systems in Predicting the Forecast Uncertainty

Author:

Loeser Carlee F.1,Herrera Michael A.1,Szunyogh Istvan1

Affiliation:

1. Texas A&M University, College Station, Texas

Abstract

Abstract This study investigates the efficiency of the major operational global ensemble forecast systems of the world in capturing the spatiotemporal evolution of the forecast uncertainty. Using data from 2015, it updates the results of an earlier study based on data from 2012. It also tests, for the first time on operational ensemble data, two quantitative relationships to aid in the interpretation of the raw ensemble forecasts. One of these relationships provides a flow-dependent prediction of the reliability of the ensemble in capturing the uncertain forecast features, while the other predicts the 95th percentile value of the magnitude of the forecast error. It is found that, except for the system of the Met Office, the main characteristics of the ensemble forecast systems have changed little between 2012 and 2015. The performance of the UKMO ensemble improved in predicting the overall magnitude of the uncertainty, but its ability to predict the dominant uncertain forecast features was degraded. A common serious limitation of the ensemble systems remains that they all have major difficulties with predicting the large-scale atmospheric flow in the long (longer than 10 days) forecast range. These difficulties are due to the inability of the ensemble members to maintain large-scale waves in the forecasts, which presents a stumbling block in the way of extending the skill of numerical weather forecasts to the subseasonal range. The two tested predictive relationships were found to provide highly accurate predictions of the flow-dependent reliability of the ensemble predictions and the 95th percentile value of the magnitude of the forecast error for the operational ensemble forecast systems.

Funder

National Science Foundation

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3