Affiliation:
1. Texas A&M University, College Station, Texas
2. National Center for Atmospheric Research, Boulder, Colorado
Abstract
Abstract
This paper employs local linear, spatial spectral, and Lorenz curve–based diagnostics to investigate the dynamics of uncertainty in global numerical weather forecasts in the NH extratropics. The diagnostics are applied to ensembles in the THORPEX Interactive Grand Global Ensemble (TIGGE). The initial growth of uncertainty is found to be the fastest at the synoptic scales (zonal wavenumbers 7–9) most sensitive to baroclinic instability. At later forecast times, the saturation of uncertainties at the synoptic scales and the longer sustainable growth of uncertainty at the large scales lead to a gradual shift of the wavenumber of the dominant uncertainty toward zonal wavenumber 5. At the subsynoptic scales, errors saturate as predicted by Lorenz’s classic theory. While the ensembles capture the general characteristics of the uncertainty dynamics efficiently, there are locations where the predicted magnitude and structure of uncertainty have considerable time-mean errors. In addition, the magnitude of systematic errors in the prediction of the uncertainty increases with increasing forecast time. These growing systematic errors are dominated by errors in the prediction of low-frequency changes in the large-scale flow.
Publisher
American Meteorological Society
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献