Examination of Mixed-Phase Precipitation Forecasts from the High-Resolution Rapid Refresh Model Using Surface Observations and Sounding Data

Author:

Ikeda Kyoko1,Steiner Matthias1,Thompson Gregory1

Affiliation:

1. National Center for Atmospheric Research,a Boulder, Colorado

Abstract

Abstract Accurate prediction of mixed-phase precipitation remains challenging for numerical weather prediction models even at high resolution and with a sophisticated explicit microphysics scheme and diagnostic algorithm to designate the surface precipitation type. Since mixed-phase winter weather precipitation can damage infrastructure and produce significant disruptions to air and road travel, incorrect surface precipitation phase forecasts can have major consequences for local and statewide decision-makers as well as the general public. Building upon earlier work, this study examines the High-Resolution Rapid Refresh (HRRR) model’s ability to forecast the surface precipitation phase, with a particular focus on model-predicted vertical temperature profiles associated with mixed-phase precipitation, using upper-air sounding observations as well as the Automated Surface Observing Systems (ASOS) and Meteorological Phenomena Identification Near the Ground (mPING) observations. The analyses concentrate on regions of mixed-phase precipitation from two winter season events. The results show that when both the observational and model data indicated mixed-phase precipitation at the surface, the model represents the observed temperature profile well. Overall, cases where the model predicted rain but the observations indicated mixed-phase precipitation generally show a model surface temperature bias of <2°C and a vertical temperature profile similar to the sounding observations. However, the surface temperature bias was ~4°C in weather systems involving cold-air damming in the eastern United States, resulting in an incorrect surface precipitation phase or the duration (areal coverage) of freezing rain being much shorter (smaller) than the observation. Cases with predicted snow in regions of observed mixed-phase precipitation present subtle difference in the elevated layer with temperatures near 0°C and the near-surface layer.

Funder

Federal Aviation Administration

Climate Program Office

National Science Foundation

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3