Kinematic and Moisture Characteristics of a Nonprecipitating Cold Front Observed during IHOP. Part II: Alongfront Structures

Author:

Friedrich Katja,Kingsmill David E.,Flamant Cyrille1,Murphey Hanne V.,Wakimoto Roger M.

Affiliation:

1. Service d’Aeronomie, Institut Pierre-Simon Laplace, Paris, France

Abstract

Kinematic and thermodynamic structures of a nonprecipitating cold front observed in west-central Kansas on 10 June 2002 during the International H2O Project (IHOP) are examined with dropsondes and airborne instrumentation that includes Doppler radars, a differential absorption lidar, and in situ sensors. Intensive observations were collected along a 125-km segment of the front, with coverage of both the cold front leading edge and the post- and prefrontal areas. Whereas the first part of this two-part series of papers focused on across-front kinematic and moisture characteristics, the study herein investigates alongfront structures relevant for convection initiation. A northeast–southwest-oriented cold front moved into the observational domain from the northwest, but its motion slowed to less than 1 m s−1 in the early afternoon. In the late afternoon it was intersected by a north-northeast–south-southwest-oriented reflectivity thin line that was advected from the southwest, and another boundary that is an extension of a large-scale dryline paralleling the thin line but located farther to the east. Doppler wind synthesis suggests an increase in low-level horizontal wind shear across the cold front leading edge with the approach and intersection of the boundaries causing an increase in low-level convergence (up to ∼1 × 10−3 s−1), positive vertical vorticity (up to ∼0.5 × 10−3 s−1), and upward motion (up to ∼1 m s−1). An organized pattern of misocyclones (vertical vorticity maxima <4 km) and enhanced updrafts with a spacing of ∼5–8 km were observed at the cold front leading edge. At the same time vortex lines manifested as horizontal vorticity maxima were observed within the cold air oriented perpendicular to the cold front leading edge and on top of the vertical wind shear layer. The analysis suggests that inflection point instability was the dominant mechanism for their development. Low Richardson number (0.3–0.4), short lifetime (<2 h), horizontal wavelength of 3–6 km, and collocation with strong horizontal and vertical wind shear are characteristics that support the hypothesis that these instabilities were Kelvin–Helmholtz waves. Towering cumulus developed along the cold front forming a convective cell close to the intersection of the cold front, dryline, and reflectivity thin line.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3