Evaluation and Improvement of an Inflow-Nudging Technique for Idealized Simulations of Convective Boundary Layers

Author:

Boyer Christian H.1,Keeler Jason M.1

Affiliation:

1. a Department of Earth and Atmospheric Sciences, Central Michigan University, Mount Pleasant, Michigan

Abstract

Abstract Recent idealized modeling studies have highlighted the importance of explicitly simulating realistic convective boundary layer (CBL) structures to assess and represent their influence on mesoscale phenomena. The choice of lateral boundary conditions (LBCs) has a substantial impact on these turbulent structures, including the distribution of kinematic and thermodynamic properties within the CBL. While use of periodic LBCs is ideal, open LBCs are required for nonuniform domains (e.g., multiple air masses or land surface types). However, open LBCs result in an unrealistic, laminar CBL structure near the upstream boundary that undoubtedly impacts the evolution of any simulated phenomena. Therefore, there is a need for a modified open LBC option to mitigate this unrealistic structure, while still permitting users to simulate phenomena in nonuniform domains. The Pennsylvania State University–NCAR Cloud Model 1 (CM1), version 19.8, includes an optional inflow-nudging technique to nudge inflow to the base-state wind profile. For the present study, the authors modified this method to one that nudges toward a continually updated, horizontally averaged profile so that the technique may be used for phenomena under evolving conditions. Simulations using LBC choices, including nudging to either the base state or horizontal average, were evaluated relative to respective dual-periodic LBC control simulations with or without vertical wind shear. The horizontal average nudging technique outperformed the traditional open LBCs and nudging to the base state, as demonstrated using a histogram matching technique applied to grid points within the CBL. Ultimately, this work can be used to assist modelers in assessing which LBCs are appropriate for their intended use.

Funder

Division of Atmospheric and Geospace Sciences

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3