Sensitivity of Numerical Simulation of Early Rapid Intensification of Hurricane Emily (2005) to Cloud Microphysical and Planetary Boundary Layer Parameterizations

Author:

Li Xuanli1,Pu Zhaoxia1

Affiliation:

1. Department of Meteorology, University of Utah, Salt Lake City, Utah

Abstract

Abstract An advanced research version of the Weather Research and Forecasting (ARW) Model is used to simulate the early rapid intensification of Hurricane Emily (2005) using grids nested to high resolution (3 km). A series of numerical simulations is conducted to examine the sensitivity of the simulation to available cloud microphysical (CM) and planetary boundary layer (PBL) parameterization schemes. Results indicate that the numerical simulations of the early rapid intensification of Hurricane Emily are very sensitive to the choice of CM and PBL schemes in the ARW model. Specifically, with different CM schemes, the simulated minimum central sea level pressure (MSLP) varies by up to 29 hPa, and the use of various PBL schemes has resulted in differences in the simulated MSLP of up to 19 hPa during the 30-h forecast period. Physical processes associated with the above sensitivities are investigated. It is found that the magnitude of the environmental vertical wind shear is not well correlated with simulated hurricane intensities. In contrast, the eyewall convective heating distributions and the latent heat flux and high equivalent potential temperature (θe) feeding from the ocean surface are directly associated with the simulated intensities. Consistent with recognized facts, higher latent heat release in stronger eyewall convection, stronger surface energy, and high θe air feeding from the ocean surface into the hurricane eyewall are evident in the more enhanced convection and intense storms. The sensitivity studies in this paper also indicate that the contributions from the CM and PBL processes can only partially explain the slow intensification in the ARW simulations. Simulation at 1-km grid resolution shows a slight improvement in Emily’s intensity forecast, implying that the higher resolution is somewhat helpful, but still not enough to cause the model to reproduce the real intensity of the hurricane.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3