Evaluation of Nine Planetary Boundary Layer Turbulence Parameterization Schemes of the Weather Research and Forecasting Model Applied to Simulate Planetary Boundary Layer Surface Properties in the Metropolitan Region of São Paulo Megacity, Brazil

Author:

Tito Janet Valdés1ORCID,Oliveira Amauri Pereira de1ORCID,Sánchez Maciel Piñero1ORCID,Fornaro Adalgiza1ORCID

Affiliation:

1. Department of Atmospheric Sciences, Institute of Astronomy, Geophysics and Atmospheric Sciences, University of São Paulo, São Paulo 05508-090, SP, Brazil

Abstract

This study evaluates nine Planetary Boundary Layer (PBL) turbulence parameterization schemes from the Weather Research and Forecasting (WRF) mesoscale meteorological model, comparing hourly values of meteorological variables observed and simulated at the surface of the Metropolitan Region of São Paulo (MRSP). The numerical results were objectively compared with high-quality observations carried out on three micrometeorological platforms representing typical urban, suburban, and rural land use areas of the MRSP, during the 2013 summer and winter field campaigns as part of the MCITY BRAZIL project. The main objective is to identify which PBL scheme best represents the diurnal evolution of conventional meteorological variables (temperature, relative and specific humidity, wind speed, and direction) and unconventional (sensible and latent heat fluxes, net radiation, and incoming downward solar radiation) on the surface. During the summer field campaign and over the suburban area of the MRSP, most PBL scheme simulations exhibited a cold and dry bias and overestimated wind speed. They also overestimated sensible heat flux, with high agreement index and correlation values. In general, the PBL scheme simulations performed well for latent heat flux, displaying low mean bias error and root square mean error values. Both incoming downward solar radiation and net radiation were also accurately simulated by most of them. The comparison of the nine PBL schemes indicated the local Mellor-Yamada-Janjic (MYJ) scheme performed best during the summer period, particularly for conventional meteorological variables for the land use suburban in the MRSP. During the winter field campaign, simulation outcomes varied significantly based on the site’s land use and the meteorological variable analyzed. The MYJ, Bougeault-Lacarrère (BouLac), and Mellor-Yamada Nakanishi-Niino (MYNN) schemes effectively simulated temperature and humidity, especially in the urban land use area. The MYNN scheme also simulated net radiation accurately. There was a tendency to overestimate sensible and latent heat fluxes, except for the rural land use area where they were consistently underestimated. However, the rural area exhibited superior correlations compared to the urban area. Overall, the MYJ scheme was deemed the most suitable for representing the convectional and nonconventional meteorological variables on the surface in all urban, suburban, and rural land use areas of the MRSP.

Funder

National Council for Scientific and Technological Development

São Paulo Research Foundation

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3