An Objective Model for Identifying Secondary Eyewall Formation in Hurricanes

Author:

Kossin James P.1,Sitkowski Matthew1

Affiliation:

1. Cooperative Institute for Meteorological Satellite Studies, University of Wisconsin—Madison, Madison, Wisconsin

Abstract

Abstract Hurricanes, and particularly major hurricanes, will often organize a secondary eyewall at some distance around the primary eyewall. These events have been associated with marked changes in the intensity and structure of the inner core, such as large and rapid deviations of the maximum wind and significant broadening of the surface wind field. While the consequences of rapidly fluctuating peak wind speeds are of great importance, the broadening of the overall wind field also has particularly dangerous consequences in terms of increased storm surge and wind damage extent during landfall events. Despite the importance of secondary eyewall formation in hurricane forecasting, there is presently no objective guidance to diagnose or forecast these events. Here a new empirical model is introduced that will provide forecasters with a probability of imminent secondary eyewall formation. The model is based on environmental and geostationary satellite features applied to a naïve Bayes probabilistic model and classification scheme. In independent testing, the algorithm performs skillfully against a defined climatology.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference43 articles.

1. Dynamic Programming.;Bellman,1957

2. Neural Networks for Pattern Recognition.;Bishop,1995

3. Dissipative heating and hurricane intensity.;Bister;Meteor. Atmos. Phys.,1998

4. The concentric eyewall cycle of Hurricane Gilbert.;Black;Mon. Wea. Rev.,1992

5. Assessing the skill of yes/no predictions.;Briggs;Biometrics,2005

Cited by 113 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3