The Adiabatic Evolution of 3D Annular Vortices with a Double-Eyewall Structure

Author:

Williams Gabriel J.1

Affiliation:

1. Department of Applied Physics, The Citadel- Military College of South Carolina, Charleston, SC 29409, USA

Abstract

Tropical cyclones (TCs) can be characterized as a 3D annular structure of elevated potential vorticity (PV). However, strong mature TCs often develop a secondary eyewall, leading to a 3D annular vortex with a double-eyewall structure. Using 2D linear stability analysis, it is shown that three types of barotropic instability (BI) are present for annular vortices with a double-eyewall structure: Type-1 BI across the secondary eyewall, Type-2 BI across the moat of the vortex, and Type-3 BI across the primary eyewall. The overall stability of these vortices (and the type of BI that develops) depends principally upon five vortex parameters: the thickness of the primary eyewall, the thickness of the secondary eyewall, the moat width, the vorticity ratio between the eye and the primary eyewall, and the vorticity ratio between the primary and secondary eyewall. The adiabatic evolution of 3D annular vortices with a double-eyewall structure is examined using a primitive equation model in normalized isobaric coordinates. It is shown that Type-2 BI is the most common type of BI for 3D annular vortices whose vortex parameters mimic TCs with a double-eyewall structure. During the onset of Type-2 BI, eddy kinetic energy budget analysis indicates that barotropic energy conversion from the mean azimuthal flow is the dominant energy source of the eddies, which produces a radial velocity field with a quadrupole structure. Absolute angular momentum budget analysis indicates that Type-2 BI generates azimuthally averaged radial outflow across the moat, and the eddies transport absolute angular momentum radially outward towards the secondary eyewall. The combination of these processes leads to the dissipation of the primary eyewall and the maintenance of the secondary eyewall for the vortex.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3