Model Error Representation in an Operational Ensemble Kalman Filter

Author:

Houtekamer P. L.1,Mitchell Herschel L.1,Deng Xingxiu2

Affiliation:

1. Meteorological Research Division, Dorval, Québec, Canada

2. Canadian Meteorological Centre, Dorval, Québec, Canada

Abstract

Since 12 January 2005, an ensemble Kalman filter (EnKF) has been used operationally at the Meteorological Service of Canada to provide the initial conditions for the medium-range forecasts of the ensemble prediction system. One issue in EnKF development is how to best account for model error. It is shown that in a perfect-model environment, without any model error or model error simulation, the EnKF spread remains representative of the ensemble mean error with respect to a truth integration. Consequently, the EnKF can be used to quantify the impact of the various error sources in a data-assimilation cycle on the quality of the ensemble mean. Using real rather than simulated observations, but still not simulating model error in any manner, the rms ensemble spread is found to be too small by approximately a factor of 2. It is then attempted to account for model error by using various combinations of the following four different approaches: (i) additive isotropic model error perturbations; (ii) different versions of the model for different ensemble members; (iii) stochastic perturbations to physical tendencies; and (iv) stochastic kinetic energy backscatter. The addition of isotropic model error perturbations is found to have the biggest impact. The identification of model error sources could lead to a more realistic, likely anisotropic, parameterization. Using different versions of the model has a small but clearly positive impact and consequently both (i) and (ii) are used in the operational EnKF. The use of approaches (iii) and (iv) did not lead to further improvements.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference37 articles.

Cited by 163 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3