Observational Analysis of Heavy Rainfall Mechanisms Associated with Severe Tropical Storm Bilis (2006) after Its Landfall

Author:

Gao Shuanzhu1,Meng Zhiyong2,Zhang Fuqing3,Bosart Lance F.4

Affiliation:

1. China National Meteorological Center, Beijing, China

2. Department of Atmospheric Sciences, School of Physics, Peking University, Beijing, China

3. Department of Meteorology, The Pennsylvania State University, University Park, Pennsylvania

4. Department of Atmospheric Sciences, University at Albany, State University of New York, Albany, New York

Abstract

Abstract This observational study attempts to determine factors responsible for the distribution of precipitation over large areas of southern China induced by Bilis, a western North Pacific Ocean severe tropical storm that made landfall on the southeastern coast of mainland China on 14 July 2006 with a remnant circulation that persisted over land until after 17 July 2006. The heavy rainfalls associated with Bilis during and after its landfall can be divided into three stages. The first stage of the rainfall, which occurred in Fujian and Zhejiang Provinces, could be directly induced by the inner-core storm circulation during its landfall. The third stage of rainfall, which occurred along the coastal areas of Guangdong and Fujian Provinces, likely resulted from the interaction between Bilis and the South China Sea monsoon enhanced by topographical lifting along the coast. The second stage of the rainfall, which appeared inland around the border regions between Jiangxi, Hunan, and Guangdong Provinces, caused the most catastrophic flooding and is the primary focus of the current study. It is found that during the second stage of the rainfall all three ingredients of deep moist convection (moisture, instability, and lifting) are in place. Several mechanisms, including vertical wind shear, warm-air advection, frontogenesis, and topography, may have contributed simultaneously to the lifting necessary for the generation of the heavy rainfall at this stage.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3