A Numerical Study of Hurricane Erin (2001). Part II: Shear and the Organization of Eyewall Vertical Motion

Author:

Braun Scott A.1,Wu Liguang2

Affiliation:

1. Mesoscale Atmospheric Processes Branch, Laboratory for Atmospheres, NASA Goddard Space Flight Center, Greenbelt, Maryland

2. Goddard Earth Science and Technology Center, University of Maryland, Baltimore County, Baltimore, Maryland

Abstract

Abstract A high-resolution numerical simulation of Hurricane Erin (2001) is used to examine the organization of vertical motion in the eyewall and how that organization responds to a large and rapid increase in the environmental vertical wind shear and subsequent decrease in shear. During the early intensification period, prior to the onset of significant shear, the upward motion in the eyewall was concentrated in small-scale convective updrafts that formed in association with regions of concentrated vorticity (herein termed mesovortices) with no preferred formation region around the eyewall. Asymmetric flow within the eye was weak. As the shear increased, an azimuthal wavenumber-1 asymmetry in storm structure developed with updrafts tending to occur on the downshear to downshear-left side of the eyewall. Continued intensification of the shear led to increasing wavenumber-1 asymmetry, large vortex tilt, and a change in eyewall structure and vertical motion organization. During this time, the eyewall structure was dominated by a vortex couplet with a cyclonic (anticyclonic) vortex on the downtilt-left (downtilt-right) side of the eyewall and strong asymmetric flow across the eye that led to strong mixing of eyewall vorticity into the eye. Upward motion was concentrated over an azimuthally broader region on the downtilt side of the eyewall, upstream of the cyclonic vortex, where low-level environmental inflow converged with the asymmetric outflow from the eye. As the shear diminished, the vortex tilt and wavenumber-1 asymmetry decreased, while the organization of updrafts trended back toward that seen during the weak shear period. Based upon the results for the Erin case, as well as that for a similar simulation of Hurricane Bonnie (1998), a conceptual model is developed for the organization of vertical motion in the eyewall as a function of the strength of the vertical wind shear. In weak to moderate shear, higher wavenumber asymmetries associated with eyewall mesovortices dominate the wavenumber-1 asymmetry associated with the shear so that convective-scale updrafts form when the mesovortices move into the downtilt side of the eyewall and dissipate on the uptilt side. Under strong shear conditions, the wavenumber-1 asymmetry, characterized by a prominent vortex couplet in the eyewall, dominates the vertical motion organization so that mesoscale ascent (with embedded convection) occurs over an azimuthally broader region on the downtilt side of the eyewall. Further research is needed to determine if these results apply more generally.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference58 articles.

1. The effect of relative flow on the asymmetric structure in the interior of hurricanes.;Bender;J. Atmos. Sci.,1997

2. A new convective adjustment scheme. Part I: Observational and theoretical basis.;Betts;Quart. J. Roy. Meteor. Soc.,1986

3. A new convective adjustment scheme. Part II: Single column tests using GATE wave, BOMEX, ATEC, and artic air-mass data sets.;Betts;Quart. J. Roy. Meteor. Soc.,1986

4. The Betts–Miller scheme.;Betts,1993

5. Vertical motion characteristics of tropical cyclones determined with airborne Doppler radial velocities.;Black;J. Atmos. Sci.,1996

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3