Near-Inertial Oscillations and the Damping of Midlatitude Gyres: A Modeling Study

Author:

Gertz Aaron1,Straub David N.1

Affiliation:

1. Department of Atmospheric and Oceanic Sciences, McGill University, Montréal, Quebec, Canada

Abstract

Abstract The classic wind-driven double-gyre problem for a homogeneous (unstratified) thin aspect ratio fluid is considered, but allowing for the flow to be depth dependent. Linear free modes for which the vertical wavenumber kz ≠ 0 are inertial oscillations, and they are excited with a large-scale stochastic forcing. This produces a background sea of near-inertial oscillations and their interaction with the vertically averaged flow is the focus of this study. In the absence of 3D forcing, the near-inertial motion vanishes and the barotropic quasigeostrophic system is recovered. With 3D forcing, 2D-to-3D energy transfers—coupled with a forward cascade of 3D energy and scale-selective dissipation—provide an energy dissipation mechanism for the gyres. The relative strength of this mechanism and a Rayleigh drag applied to the 2D flow depends on both the 3D forcing strength and the Rayleigh drag coefficient.

Publisher

American Meteorological Society

Subject

Oceanography

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A special phenomenon of wave interactions: An application of nonlinear evolution equation in (3+1)-dimension;Communications in Nonlinear Science and Numerical Simulation;2024-03

2. Kinetic Energy Exchanges between a Two-Dimensional Front and Internal Waves;Journal of Physical Oceanography;2023-11

3. Turbulent wave-balance exchanges in the ocean;Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences;2023-08

4. The catalytic effect of near-inertial waves on -plane zonal jets;Journal of Fluid Mechanics;2023-05-04

5. Turbulent Transition of a Flow from Small to O(1) Rossby Numbers;Journal of Physical Oceanography;2022-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3