Turbulent Transition of a Flow from Small to O(1) Rossby Numbers

Author:

Thomas Jim12,Vishnu R.3

Affiliation:

1. a International Centre for Theoretical Sciences, Tata Institute of Fundamental Research, Bangalore, India

2. b Centre for Applicable Mathematics, Tata Institute of Fundamental Research, Bangalore, India

3. c Fluid Mechanics Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan

Abstract

Abstract Oceanic flows are energetically dominated by low vertical modes. However, disturbances in the form of atmospheric storms, eddy interactions with various forms of boundaries, or spontaneous emission by coherent structures can generate weak high-baroclinic modes. The feedback of the low-energy high-baroclinic modes on large-scale energetically dominant low modes may be weak or strong depending on the flow Rossby number. In this paper we study this interaction using an idealized setup by constraining the flow dynamics to a high-energy barotropic mode and a single low-energy high-baroclinic mode. Our investigation points out that at low Rossby numbers the barotropic flow organizes into large-scale coherent vortices via an inverse energy flux while the baroclinic flow accumulates predominantly in anticyclonic barotropic vortices. In contrast, with increasing Rossby number, the baroclinic flow catalyzes a forward flux of barotropic energy. The barotropic coherent vortices decrease in size and number, with a strong preference for cyclonic coherent vortices at higher Rossby numbers. On partitioning the flow domain into strain-dominant and vorticity-dominant regions based on the barotropic flow, we find that at higher Rossby numbers baroclinic flow accumulates in strain-dominant regions, away from vortex cores. Additionally, a major fraction of the forward energy flux of the flow takes place in strain-dominant regions. Overall, one of the key outcomes of this study is the finding that even a low-energy high-baroclinic flow can deplete and dissipate large-scale coherent structures at O(1) Rossby numbers.

Publisher

American Meteorological Society

Subject

Oceanography

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Turbulent wave-balance exchanges in the ocean;Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences;2023-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3