The Interaction of Supertyphoon Maemi (2003) with a Warm Ocean Eddy

Author:

Lin I-I.1,Wu Chun-Chieh1,Emanuel Kerry A.2,Lee I-Huan3,Wu Chau-Ron4,Pun Iam-Fei4

Affiliation:

1. Department of Atmospheric Sciences, National Taiwan University, Taipei, Taiwan

2. Program in Atmospheres, Oceans, and Climate, Massachusetts Institute of Technology, Cambridge, Massachusetts

3. Institute of Marine Geology and Chemistry, National Taiwan Sun Yat-Sen University, Kaohsiung, Taiwan

4. Department of Earth Science, National Taiwan Normal University, Taipei, Taiwan

Abstract

Abstract Understanding the interaction of ocean eddies with tropical cyclones is critical for improving the understanding and prediction of the tropical cyclone intensity change. Here an investigation is presented of the interaction between Supertyphoon Maemi, the most intense tropical cyclone in 2003, and a warm ocean eddy in the western North Pacific. In September 2003, Maemi passed directly over a prominent (700 km × 500 km) warm ocean eddy when passing over the 22°N eddy-rich zone in the northwest Pacific Ocean. Analyses of satellite altimetry and the best-track data from the Joint Typhoon Warning Center show that during the 36 h of the Maemi–eddy encounter, Maemi’s intensity (in 1-min sustained wind) shot up from 41 m s−1 to its peak of 77 m s−1. Maemi subsequently devastated the southern Korean peninsula. Based on results from the Coupled Hurricane Intensity Prediction System and satellite microwave sea surface temperature observations, it is suggested that the warm eddies act as an effective insulator between typhoons and the deeper ocean cold water. The typhoon’s self-induced sea surface temperature cooling is suppressed owing to the presence of the thicker upper-ocean mixed layer in the warm eddy, which prevents the deeper cold water from being entrained into the upper-ocean mixed layer. As simulated using the Coupled Hurricane Intensity Prediction System, the incorporation of the eddy information yields an evident improvement on Maemi’s intensity evolution, with its peak intensity increased by one category and maintained at category-5 strength for a longer period (36 h) of time. Without the presence of the warm ocean eddy, the intensification is less rapid. This study can serve as a starting point in the largely speculative and unexplored field of typhoon–warm ocean eddy interaction in the western North Pacific. Given the abundance of ocean eddies and intense typhoons in the western North Pacific, these results highlight the importance of a systematic and in-depth investigation of the interaction between typhoons and western North Pacific eddies.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 277 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Study of the Vortex Filament Pool Left by a Super Typhoon;Journal of Geophysical Research: Oceans;2024-08

2. Spatiotemporal methods for estimating subsurface ocean thermal response to tropical cyclones;Advances in Statistical Climatology, Meteorology and Oceanography;2024-07-22

3. Observed Increase in Tropical Cyclone‐Induced Sea Surface Cooling Near the U.S. Southeast Coast;Geophysical Research Letters;2024-07-19

4. Upper Ocean Responses to Tropical Cyclone Mekunu (2018) in the Arabian Sea;Journal of Marine Science and Engineering;2024-07-13

5. Ocean internal tides suppress tropical cyclones in the South China Sea;Nature Communications;2024-05-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3