Increasing Antarctic Sea Ice under Warming Atmospheric and Oceanic Conditions

Author:

Zhang Jinlun1

Affiliation:

1. Polar Science Center, Applied Physics Laboratory, College of Ocean and Fishery Sciences, University of Washington, Seattle, Washington

Abstract

Abstract Estimates of sea ice extent based on satellite observations show an increasing Antarctic sea ice cover from 1979 to 2004 even though in situ observations show a prevailing warming trend in both the atmosphere and the ocean. This riddle is explored here using a global multicategory thickness and enthalpy distribution sea ice model coupled to an ocean model. Forced by the NCEP–NCAR reanalysis data, the model simulates an increase of 0.20 × 1012 m3 yr−1 (1.0% yr−1) in total Antarctic sea ice volume and 0.084 × 1012 m2 yr−1 (0.6% yr−1) in sea ice extent from 1979 to 2004 when the satellite observations show an increase of 0.027 × 1012 m2 yr−1 (0.2% yr−1) in sea ice extent during the same period. The model shows that an increase in surface air temperature and downward longwave radiation results in an increase in the upper-ocean temperature and a decrease in sea ice growth, leading to a decrease in salt rejection from ice, in the upper-ocean salinity, and in the upper-ocean density. The reduced salt rejection and upper-ocean density and the enhanced thermohaline stratification tend to suppress convective overturning, leading to a decrease in the upward ocean heat transport and the ocean heat flux available to melt sea ice. The ice melting from ocean heat flux decreases faster than the ice growth does in the weakly stratified Southern Ocean, leading to an increase in the net ice production and hence an increase in ice mass. This mechanism is the main reason why the Antarctic sea ice has increased in spite of warming conditions both above and below during the period 1979–2004 and the extended period 1948–2004.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference34 articles.

1. Abrupt climate change.;Alley;Science,2003

2. Observations and modelling of Antarctic downslope flows: A review.;Baines,1998

3. The influence of sea ice on ocean heat uptake in response to increasing CO2.;Bitz;J. Climate,2006

4. 30-year satellite record reveals contrasting Arctic and Antarctic decadal sea ice variability.;Cavalieri;Geophys. Res. Lett.,2003

5. Antarctic water masses and circulation.;Deacon,1977

Cited by 169 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3