The Full-Spectrum Correlated-k Method for Longwave Atmospheric Radiative Transfer Using an Effective Planck Function

Author:

Hogan Robin J.1

Affiliation:

1. Department of Meteorology, University of Reading, Reading, United Kingdom

Abstract

Abstract The correlated-k-distribution (CKD) method is widely used in the radiative transfer schemes of atmospheric models; it involves dividing the spectrum into a number of bands and then reordering the gaseous absorption coefficients within each one. The fluxes and heating rates for each band may then be computed by discretizing the reordered spectrum into O(10) quadrature points per major gas and performing a pseudomonochromatic radiation calculation for each point. In this paper it is first argued that for clear-sky longwave calculations, sufficient accuracy for most applications can be achieved without the need for bands: reordering may be performed on the entire longwave spectrum. The resulting full-spectrum correlated-k (FSCK) method requires significantly fewer pseudomonochromatic calculations than standard CKD to achieve a given accuracy. The concept is first demonstrated by comparing with line-by-line calculations for an atmosphere containing only water vapor, in which it is shown that the accuracy of heating rate calculations improves approximately in proportion to the square of the number of quadrature points. For more than around 20 points, the root-mean-square error flattens out at around 0.015 K day−1 due to the imperfect rank correlation of absorption spectra at different pressures in the profile. The spectral overlap of m different gases is treated by considering an m-dimensional hypercube where each axis corresponds to the reordered spectrum of one of the gases. This hypercube is then divided up into a number of volumes, each approximated by a single quadrature point, such that the total number of quadrature points is slightly fewer than the sum of the number that would be required to treat each of the gases separately. The gaseous absorptions for each quadrature point are optimized such that they minimize a cost function expressing the deviation of the heating rates and fluxes calculated by the FSCK method from line-by-line calculations for a number of training profiles. This approach is validated for atmospheres containing water vapor, carbon dioxide, and ozone, in which it is found that in the troposphere and most of the stratosphere, heating rate errors of less than 0.2 K day−1 can be achieved using a total of 23 quadrature points, decreasing to less than 0.1 K day−1 for 32 quadrature points. It would be relatively straightforward to extend the method to include other gases.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference29 articles.

1. The effect of the absorption lines on the radiative equilibrium of the outer layers of the stars.;Ambartzumian;Publ. Obs. Astron. Univ. Leningrad,1936

2. The albedo of fractal stratocumulus clouds.;Cahalan;J. Atmos. Sci.,1994

3. Atmospheric radiative transfer modeling: A summary of the AER codes.;Clough;J. Quant. Spectrosc. Radiat. Transfer,2005

4. Relaxing the well-mixed greenhouse gas approximation in climate simulations: Consequences for stratospheric climate.;Curry;J. Geophys. Res.,2006

5. Efficient calculation of infrared fluxes and cooling rates using the two-stream equations.;Edwards;J. Atmos. Sci.,1996

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3