Optimized Alternate Mapping Correlated K‐Distribution Method for Atmospheric Longwave Radiative Transfer

Author:

Cai Yue1,Zhang Feng12ORCID,Lin Han3ORCID,Li Jiangnan4ORCID,Zhang Hua5ORCID,Li Wenwen3,Hu Shuai6

Affiliation:

1. Department of Atmospheric and Oceanic Sciences and Institute of Atmospheric Sciences Fudan University Shanghai China

2. Shanghai Qi Zhi Institute Shanghai China

3. School of Atmospheric Science Nanjing University of Information Science and Technology Nanjing China

4. Canadian Centre for Climate Modelling and Analysis Science and Technology Branch Environment Canada Victoria BC Canada

5. State Key Laboratory of Severe Weather Chinese Academy of Meteorological Sciences Beijing China

6. National University of Defense Technology Changsha China

Abstract

AbstractRadiative transfer models are widely applied in climate models to simulate vertical temperature perturbations caused by external radiative forcings. A large part of radiative transfer models is the infrared gaseous spectral transmittance scheme, which quantifies the longwave atmospheric absorption. A rapid infrared gaseous spectral transmittance scheme, called the Optimized alternate Mapping Correlated K‐Distribution model (OMCKD), is introduced in this paper. To improve the accuracy of our scheme without increasing pseudo‐monochromatic calculations, we introduce the optimal iteration method to automatically tune the equivalent absorption coefficients in the cumulative probability subspace. In addition, a new expression weighted by black‐body radiation is introduced to calculate the equivalent absorption coefficient. The OMCKD simulates heating rate and radiation flux with errors of less than 0.12 K d−1 and 0.35 W m−2, respectively, below stratopause for standard atmospheric profiles. The OMCKD is also evaluated and compared with the rapid radiative transfer model for general circulation models (RRTMG) in realistic atmospheric profiles. We found that OMCKD can accurately produce heating rates and generally captures radiative forcings associated with large perturbations to the concentrations of main greenhouse gases. Furthermore, the number of pseudo‐monochromatic calculations in OMCKD is 11.4% less than that in RRTMG, which indicates less computational cost.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Publisher

American Geophysical Union (AGU)

Subject

General Earth and Planetary Sciences,Environmental Chemistry,Global and Planetary Change

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3