Regime Transitions of Cross-Equatorial Hadley Circulations with Zonally Asymmetric Thermal Forcings

Author:

Zhai Jun1,Boos William1

Affiliation:

1. Department of Geology and Geophysics, Yale University, New Haven, Connecticut

Abstract

Abstract Observed nonlinearities in the seasonal evolution of monsoons have been previously explained using theories for Hadley circulations driven by zonally symmetric thermal forcings, even though monsoonal forcings deviate strongly from the assumption of zonal symmetry. Here, an idealized model of a dry, three-dimensional atmosphere is used to compare the response to zonally symmetric and asymmetric off-equatorial thermal forcings. For symmetric forcings, the zonal-mean, cross-equatorial mass flux increases more rapidly with the amplitude of the forcing once the forcing becomes strong enough to reduce the upper-tropospheric absolute vorticity to near zero, consistent with previous studies of the transition to angular momentum–conserving flow. For zonally asymmetric forcings, the zonal-mean cross-equatorial flow exhibits a similar dependence on forcing strength and a similar reduction of the zonal-mean upper-level vorticity, but asymmetric forcings also produce strong zonal overturnings with subsidence west of the heating, as in the well-known linear response to off-equatorial heatings. The mass flux in these zonal overturnings increases linearly with forcing strength until its rate of increase tapers off for the strongest forcings; the total upward mass flux (i.e., the zonal-mean plus zonally asymmetric components) increases linearly with the strength of zonally asymmetric forcings and exhibits no abrupt or nonlinear dependence on forcing amplitude. These results indicate the importance of considering the zonally asymmetric part of the divergent response to off-equatorial forcings and suggest that theories based on zonally symmetric forcings need further examination before they can be assumed to describe observed monsoons.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3