Contributions of Surface Sensible Heat Fluxes to Tropical Cyclone. Part II: The Sea Spray Processes

Author:

Ma Zhanhong1,Fei Jianfang2,Cheng Xiaoping2,Wang Yuqing3,Huang Xiaogang2

Affiliation:

1. College of Meteorology and Oceanography, People’s Liberation Army University of Science and Technology, and Key Laboratory of Meteorological Disaster of Ministry of Education, Nanjing University of Information Science and Technology, Nanjing, China

2. College of Meteorology and Oceanography, People’s Liberation Army University of Science and Technology, Nanjing, China

3. International Pacific Research Center, and Department of Meteorology, School of Ocean and Earth Science and Technology, University of Hawai‘i at Mānoa, Honolulu, Hawaii

Abstract

Abstract In Part II of this study, the roles of surface sensible heat fluxes (SHX) in tropical cyclones (TCs) are further investigated in the context of sea spray processes. Results show that the sea spray evaporation is favorable for the TC intensification through enhancing the surface latent heat fluxes (LHX). Unlike the results in Part I, the removal of SHX has led to a somewhat weaker TC by inclusion of sea spray. This is because the spray-mediated latent heat fluxes are simultaneously diminished after cutting down the SHX. Without the warming of SHX from the ocean, the surface air becomes cooler and thereby closer to saturation, which substantially hinders the evaporation of sea spray droplets. Therefore, the SHX are instrumental for sustaining the release of latent heat fluxes by sea spray evaporation. In the experiments of Part I and this study, the reduced total surface enthalpy fluxes as a result of the removal of SHX do not necessarily result in weakened TCs, while the larger LHX basically correspond to stronger TCs. This suggests that the TC intensity is largely dependent on the LHX rather than the total surface enthalpy fluxes, although the latter is generally dominated by the former. Relative roles of thermal and moisture effects in radially elevating the surface equivalent potential temperature θe are also compared. The contributions of thermal effects account for 30%–35% of the total changes in θe for mature TCs, no matter whether SHX from the ocean are included. This further implies that the SHX contribute insignificantly to the spinup of a TC.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3