A Comparison between Moist and Dry Tropical Cyclones: The Low Effectiveness of Surface Sensible Heat Flux in Storm Intensification

Author:

Abstract

Abstract Recent numerical modeling studies demonstrate that dry tropical cyclones can be stably sustained via a supply of surface sensible heat flux. This raises questions of whether surface sensible heat flux (SHX) and latent heat flux (LHX) have the same effect on the intensity evolution of tropical cyclones. An estimation of equivalent potential temperature budget in the boundary layer shows that LHX leads to larger increase in equivalent potential temperature than SHX even when they possess the same magnitude. By formulating these two kinds of surface heat fluxes with the same mathematical framework, the simulated intensifications of moist and dry tropical cyclones are compared, with the former driven exclusively by LHX and the latter by SHX. Results show significantly larger intensification rates for the tropical cyclone driven by LHX than that by SHX, revealing low effectiveness of SHX in the intensification of tropical cyclones. The diabatic heating in the moist tropical cyclone occurs accompanying the convection, while it is merely pronounced near the surface in the dry tropical cyclone and is decoupled from the dry convection. A new surface pressure tendency equation is proposed, without incorporating the implicit pressure tendency term on the right-hand side. The budget analysis indicates that the SHX is less effective than LHX in lowering surface central pressure and therefore in tropical cyclone intensification. A series of sensitivity experiments suggest that the threshold of energy input required for spinning up a tropical cyclone is lower in the form of LHX than that of SHX.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Hunan Province

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3