Metamodeling of Droplet Activation for Global Climate Models

Author:

Rothenberg Daniel1,Wang Chien1

Affiliation:

1. Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts

Abstract

Abstract The nucleation of cloud droplets from the ambient aerosol is a critical physical process that must be resolved for global models to faithfully predict aerosol–cloud interactions and aerosol indirect effects on climate. To better represent droplet nucleation from a complex, multimodal, and multicomponent aerosol population within the context of a global model, a new metamodeling framework is applied to derive an efficient and accurate activation parameterization. The framework applies polynomial chaos expansion to a detailed parcel model in order to derive an emulator that maps thermodynamic and aerosol parameters to the supersaturation maximum achieved in an adiabatically ascending parcel and can be used to diagnose droplet number from a single lognormal aerosol mode. The emulator requires much less computational time to build, store, and evaluate than a high-dimensional lookup table. Compared to large sample sets from the detailed parcel model, the relative error in the predicted supersaturation maximum and activated droplet number computed with the best emulator is and (one standard deviation), respectively. On average, the emulators constructed here are as accurate and between 10 and 17 times faster than a leading physically based activation parameterization. Because the underlying parcel model being emulated resolves size-dependent droplet growth factors, the emulator captures kinetic limitations on activation. The results discussed in this work suggest that this metamodeling framework can be extended to accurately account for the detailed activation of a complex aerosol population in an arbitrary coupled global aerosol–climate model.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 27 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3