Parameterizing Raindrop Formation Using Machine Learning

Author:

Takeishi Azusa1,Wang Chien1

Affiliation:

1. a Laboratoire d’Aérologie, UPS/CNRS, Toulouse, France

Abstract

Abstract Raindrop formation processes in warm clouds mainly consist of condensation and collision–coalescence of small cloud droplets. Once raindrops form, they can continue growing through collection of cloud droplets and self-collection. In this study, we develop novel emulators to represent raindrop formation as a function of various physical or background environmental conditions by using a sophisticated aerosol–cloud model containing 300 droplet size bins and machine learning methods. The emulators are then implemented in two microphysics schemes in the Weather Research and Forecasting Model and tested in two idealized cases. The simulations of shallow convection with the emulators show a clear enhancement of raindrop formation compared to the original simulations, regardless of the scheme in which they were embedded. On the other hand, the simulations of deep convection show a more complex response to the implementation of the emulators, in terms of the changes in the amount of rainfall, due to the larger number of microphysical processes involved in the cloud system (i.e., ice-phase processes). Our results suggest the potential of emulators to replace the conventional parameterizations, which may allow us to improve the representation of physical processes at an affordable computational expense. Significance Statement Formation of raindrops marks a critical stage in cloud evolution. Accurate representations of raindrop formation processes require detailed calculations of cloud droplet growth processes. These calculations are often not affordable in weather and climate models as they are computationally expensive due to their complex dependence on cloud droplet size distributions and dynamical conditions. As a result, simplified parameterizations are more frequently used. In our study we trained machine learning models to learn raindrop formation rates from detailed calculations of cloud droplet evolutions in 1000 parcel-model simulations. The implementation of the developed models or the emulators in a weather forecasting model shows a change in the total rainfall and cloud characteristics, indicating the potential improvement of cloud representations in models if these emulators replace the conventional parameterizations.

Funder

Centre National d’Etudes Spatiales

L’Agence National de la Recherche

Grand Équipement National De Calcul Intensif

CALMIP

Publisher

American Meteorological Society

Reference43 articles.

1. Terminal velocity and shape of cloud and precipitation drops aloft;Beard, K. V.,1976

2. A flux method for the numerical solution of the stochastic collection equation;Bott, A.,1998

3. Prognostic validation of a neural network unified physics parameterization;Brenowitz, N. D.,2018

4. Cloud droplet collisions in turbulent environment: Collision statistics and parameterization;Chen, S.,2016

5. Turbulence effects of collision efficiency and broadening of droplet size distribution in cumulus clouds;Chen, S.,2018a

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3