The Dissipation of Trapped Lee Waves. Part II: The Relative Importance of the Boundary Layer and the Stratosphere

Author:

Hills Matthew O. G.1,Durran Dale R.2,Blossey Peter N.2

Affiliation:

1. Department of Atmospheric Sciences, University of Utah, Salt Lake City, Utah

2. Department of Atmospheric Sciences, University of Washington, Seattle, Washington

Abstract

Abstract Decaying trapped waves exert a drag on the large-scale flow. The two most studied mechanisms for such decay are boundary layer dissipation and leakage into the stratosphere. If the waves dissipate in the boundary layer, they exert a drag near the surface, whereas, if they leak into the stratosphere, the drag is exerted at the level where the waves dissipate aloft. Although each of these decay mechanisms has been studied in isolation, their relative importance has not been previously assessed. Here, numerical simulations are conducted showing that the relative strength of these two mechanisms depends on the details of the environment supporting the waves. During actual trapped-wave events, the environment often includes elevated inversions and strong winds aloft. Such conditions tend to favor leakage into the stratosphere, although boundary layer dissipation becomes nonnegligible in cases with shorter resonant wavelengths and higher tropopause heights. In contrast, idealized two-layer profiles with constant wind speeds and high static stability beneath a less stable upper troposphere support lee waves that are much more susceptible to boundary dissipation and relatively unaffected by the presence of a stratosphere. One reason that trapped waves in the two-layer case do not leak much energy upward is that the resonant wavelength is greatly reduced in the presence of surface friction. This reduction in wavelength is well predicted by the linear inviscid equations if the basic-state profile is modified a posteriori to include the shallow ground-based shear layer generated by surface friction.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference26 articles.

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3