Gravity Wave Excitation during the Coastal Transition of an Extreme Katabatic Flow in Antarctica

Author:

Vignon Étienne1ORCID,Picard Ghislain2,Durán-Alarcón Claudio2,Alexander Simon P.3,Gallée Hubert2,Berne Alexis1

Affiliation:

1. Environmental Remote Sensing Laboratory (LTE), École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland

2. UGA, CNRS, Institut des Géosciences de l’Environnement, UMR 5001, Grenoble, France

3. Australian Antarctic Division, Hobart, Tasmania, Australia

Abstract

Abstract The offshore extent of Antarctic katabatic winds exerts a strong control on the production of sea ice and the formation of polynyas. In this study, we make use of a combination of ground-based remotely sensed and meteorological measurements at Dumont d’Urville (DDU) station, satellite images, and simulations with the Weather Research and Forecasting Model to analyze a major katabatic wind event in Adélie Land. Once well developed over the slope of the ice sheet, the katabatic flow experiences an abrupt transition near the coastal edge consisting of a sharp increase in the boundary layer depth, a sudden decrease in wind speed, and a decrease in Froude number from 3.5 to 0.3. This so-called katabatic jump manifests as a turbulent “wall” of blowing snow in which updrafts exceed 5 m s−1. The wall reaches heights of 1000 m and its horizontal extent along the coast is more than 400 km. By destabilizing the boundary layer downstream, the jump favors the trapping of a gravity wave train—with a horizontal wavelength of 10.5 km—that develops in a few hours. The trapped gravity waves exert a drag that considerably slows down the low-level outflow. Moreover, atmospheric rotors form below the first wave crests. The wind speed record measured at DDU in 2017 (58.5 m s−1) is due to the vertical advection of momentum by a rotor. A statistical analysis of observations at DDU reveals that katabatic jumps and low-level trapped gravity waves occur frequently over coastal Adélie Land. It emphasizes the important role of such phenomena in the coastal Antarctic dynamics.

Funder

EPFL-LOSUMEA

Australian Antarctic Program

Agence Nationale de la Recherche

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3