Impacts of Updraft Size and Dimensionality on the Perturbation Pressure and Vertical Velocity in Cumulus Convection. Part I: Simple, Generalized Analytic Solutions

Author:

Morrison Hugh1

Affiliation:

1. National Center for Atmospheric Research,* Boulder, Colorado

Abstract

Abstract This study investigates relationships between vertical velocity, perturbation pressure, updraft size, and dimensionality for cumulus convection. Generalized theoretical expressions are derived from approximate analytic solutions of the governing momentum and mass continuity equations for both two-dimensional (2D) and axisymmetric quasi-three-dimensional (3D) steady-state updrafts. These expressions relate perturbation pressure and vertical velocity to updraft radius R, height H, and thermal buoyancy. They suggest that the vertical velocity at the level of neutral buoyancy is reduced from perturbation pressure effects by factors of and in 2D and 3D, respectively, where is a nondimensional length, with somewhat different scalings lower in the updraft (α is a parameter equal to the ratio of vertical velocity horizontally averaged across the updraft to that at the updraft center). They also indicate that updrafts are weaker in 2D than 3D, all else being equal, with a difference of up to a factor of 2 in vertical velocity for as a direct result of differences in mass continuity between 2D and axisymmetric 3D flow. Differences between these expressions and other analytic solutions, including those derived from single normal mode Fourier/Fourier–Bessel expansion of the buoyant perturbation pressure Poisson equation, are discussed. Part II of this study compares the theoretical expressions with numerical solutions of the buoyant perturbation pressure Poisson equation for a wide range of thermal buoyancy profiles representing shallow-to-deep moist convection and also with fully dynamical 2D and 3D updraft simulations.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 65 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3