Synoptic and Topographic Variability of Northern California Precipitation Characteristics in Landfalling Winter Storms Observed during CALJET

Author:

Kingsmill David E.1,Neiman Paul J.2,Ralph F. Martin2,White Allen B.1

Affiliation:

1. University of Colorado–CIRES, and NOAA/Environmental Technology Laboratory, Boulder, Colorado

2. NOAA/Environmental Technology Laboratory, Boulder, Colorado

Abstract

Abstract Observations from northern California during the California Landfalling Jets (CALJET) experiment are used to examine the mean characteristics of precipitation and their variances as functions of synoptic and topographic regimes. Ten cases involving the landfall of extratropical cyclones are analyzed with radar and rain gauge data collected at two sites: one in the coastal mountains north of San Francisco (CZD) and the other in the Central Valley just west of Sacramento (KDAX). Aside from the melting-layer bright band, the most striking feature in the 10-case composite vertical profile of radar reflectivity at CZD was a distinct change in slope about 2.5 km above the bright band. This “shoulder” is thought to represent a change in the growth rate of hydrometeors. Although the bright band was quite distinct, about one-third of the profiles in the composite did not exhibit this feature. These nonbrightband (NBB) profiles had a low-level slope where reflectivity increased with decreasing altitude, a structure suggesting that collision–coalescence was the primary growth process. The relationship between surface rainfall rate and low-level radar reflectivity implies that all profiles were composed of larger numbers of small drops than expected from a Marshall–Palmer drop size distribution, a trend that was especially apparent for NBB profiles. Synoptic variability of precipitation characteristics at CZD were examined by identifying five distinct regimes (cold sector, warm front, warm sector, cold front, and cool sector) based on a simplified conceptual model. The shoulder remained approximately 2.5 km above the bright band in each regime. Rainfall intensity was highest during the cold-frontal regime and NBB rainfall was most common during the warm-frontal, warm-sector, and cool-sector regimes. Topographic variability of precipitation characteristics was investigated by comparing results at CZD and KDAX. A shoulder structure located about 2.5 km above the bright band was also evident in the KDAX profiles, suggesting that this feature is related to large-scale dynamic, thermodynamic, and microphysical processes rather than orographic effects. The relationship between surface rainfall rate and low-level radar reflectivity near KDAX closely followed a trend expected for a Marshall–Palmer drop size distribution, implying the presence of relatively larger raindrops than observed at CZD and indicating that NBB rainfall occurs less frequently near KDAX.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference63 articles.

1. NCEP forecasts of the El Niño of 1997–98 and its U.S. impacts.;Barnston;Bull. Amer. Meteor. Soc.,1999

2. Radar Observations of the Atmosphere.;Battan,1973

3. Bergeron, T. , 1965: On the low-level redistribution of atmospheric water caused by orography. Proc. Int. Conf. on Cloud Physics, Tokyo, Japan, IAMAP/WMO, 96–100.

4. Mesoscale structure of rain systems in the British Isles.;Browning;J. Meteor. Soc. Japan,1974

5. Structure, mechanism, and prediction of orographically enhanced rain in Britain.;Browning,1980

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3