Performance of New Near-Real-Time PERSIANN Product (PDIR-Now) for Atmospheric River Events over the Russian River Basin, California

Author:

Afzali Gorooh Vesta1ORCID,Shearer Eric J.1,Nguyen Phu1,Hsu Kuolin1,Sorooshian Soroosh12,Cannon Forest3,Ralph Marty3

Affiliation:

1. a Center for Hydrometeorology and Remote Sensing, Department of Civil and Environmental Engineering, University of California, Irvine, Irvine, California

2. b Department of Earth System Science, University of California, Irvine, Irvine, California

3. c Center for Western Weather and Water Extremes, Scripps Institution of Oceanography, University of California, San Diego, San Diego, California

Abstract

Abstract Most heavy precipitation events and extreme flooding over the U.S. Pacific coast can be linked to prevalent atmospheric river (AR) conditions. Thus, reliable quantitative precipitation estimation with a rich spatiotemporal resolution is vital for water management and early warning systems of flooding and landslides over these regions. At the same time, high-quality near-real-time measurements of AR precipitation remain challenging due to the complex topographic features of land surface and meteorological conditions of the region: specifically, orographic features occlude radar measurements while infrared-based algorithms face challenges, differentiating between both cold brightband (BB) precipitation and the warmer nonbrightband (NBB) precipitation. It should be noted that the latter precipitation is characterized by greater orographic enhancement. In this study, we evaluate the performance of a recently developed near-real-time satellite precipitation algorithm: Precipitation Estimation from Remotely Sensed Information Using Artificial Neural Networks (PERSIANN) Dynamic Infrared–Rain Rate-Now (PDIR-Now). This model is primarily dependent on infrared information from geostationary satellites as input; consequently, PDIR-Now has the advantage of short data latency, 15–60-min delay between observation to precipitation product delivery. The performance of PDIR-Now is analyzed with a focus on AR-related events for cases dominated by NBB and BB precipitation over the Russian River basin. In our investigations, we utilize S-band (3-GHz) precipitation profilers with Joss/Parsivel disdrometer measurements at the Middletown and Santa Rosa stations to classify BB and NBB precipitation events. In general, our analysis shows that PDIR-Now is more skillful in retrieving precipitation rates over both BB and NBB events across the topologically complex study area as compared to PERSIANN-Cloud Classification System (CCS). Also, we discuss the performance of well-known operational near-real-time precipitation products from 2017 to 2019. Conventional categorical and volumetric categorical indices, as well as continuous statistical metrics, are used to show the differences between various high-resolution precipitation products such as Multi-Radar Multi-Sensor (MRMS).

Funder

Future Investigators in NASA Earth and Space Science and Technology

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3