Assessment of Forecasts during Persistent Valley Cold Pools in the Bonneville Basin by the North American Mesoscale Model

Author:

Reeves Heather Dawn1,Elmore Kimberly L.1,Manikin Geoffrey S.2,Stensrud David J.3

Affiliation:

1. National Severe Storms Laboratory, and Cooperative Institute for Mesoscale Meteorological Studies, University of Oklahoma, Norman, Oklahoma

2. National Centers for Environmental Prediction/Environmental Modeling Center, Camp Springs, Maryland

3. National Severe Storms Laboratory, Norman, Oklahoma

Abstract

Abstract North American Mesoscale Model (NAM) forecasts of low-level temperature and dewpoint during persistent valley cold pools in the Bonneville Basin of Utah are assessed. Stations near the east sidewall have a daytime cold and nighttime warm bias. This is due to a poor representation of the steep slopes on this side of the basin. Basin stations where the terrain is better represented by the model have a distinct warm, moist bias at night. Stations in snow-covered areas have a cold bias for both day and night. Biases are not dependent on forecast lead or validation time. Several potential causes for the various errors are considered in a series of sensitivity experiments. An experiment with 4-km grid spacing, which better resolves the gradient of the slopes on the east side of the basin, yields smaller errors along the east corridor of the basin. The NAM assumes all soil water freezes at a temperature of 273 K. This is likely not representative of the freezing temperature in the salt flats in the western part of the basin, since salt reduces the freezing point of water. An experiment testing this hypothesis shows that reducing the freezing point of soil water in the salt flats leads to an average error reduction between 1.5 and 4 K, depending on the station and time of day. Using a planetary boundary layer scheme that has greater mixing alleviates the cold bias over snow somewhat, but the exact source of this bias could not be determined.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference59 articles.

1. Effect of shear, stability and valley characteristics on the destruction of temperature inversions;Bader;J. Climate Appl. Meteor.,1985

2. An analysis of the structure of local wind systems in a broad mountain basin;Banta;J. Appl. Meteor.,1981

3. Sensitivity of MM5-simulated boundary layer characteristics to turbulence parameterization;Berg;J. Appl. Meteor.,2005

4. A new convective adjustment scheme. Part II: Single column tests using GATE wave, BOMEX, ATEX and Arctic air-mass data sets;Betts;Quart. J. Roy. Meteor. Soc.,1986

5. Maintenance of a mountain valley cold pool: A numerical study;Billings;Mon. Wea. Rev.,2006

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3