A New Look at the Physics of Rossby Waves: A Mechanical–Coriolis Oscillation

Author:

Cai Ming1,Huang Bohua2

Affiliation:

1. Department of Earth, Ocean, and Atmospheric Science, The Florida State University, Tallahassee, Florida

2. Department of Atmospheric, Oceanic, and Earth Sciences, College of Science, George Mason University, Fairfax, Virginia, and Center for Ocean–Land–Atmosphere Studies, Calverton, Maryland

Abstract

Abstract The presence of the latitudinal variation of the Coriolis parameter serves as a mechanical barrier that causes a mass convergence for the poleward geostrophic flow and divergence for the equatorward flow, just as a sloped bottom terrain does to a crossover flow. Part of the mass convergence causes pressure to rise along the uphill pathway, while the remaining part is detoured to cross isobars out of the pathway. This mechanically excited cross-isobar flow, being unbalanced geostrophically, is subject to a “half-cycle” Coriolis force that only turns it to the direction parallel to isobars without continuing to turn it farther back to its opposite direction because the geostrophic balance is reestablished once the flow becomes parallel to isobars. Such oscillation, involving a barrier-induced mass convergence, a mechanical deflection, and a half-cycle Coriolis deflection, is referred to as a mechanical–Coriolis oscillation with a “barrier-induced half-cycle Coriolis force” as its restoring force. Through a complete cycle of the mechanical–Coriolis oscillation, a new geostrophically balanced flow pattern emerges to the left of the existing flow when facing the uphill (downhill) direction of the barrier in the Northern (Southern) Hemisphere. The β barrier is always sloped toward the pole in both hemispheres, responsible for the westward propagation of Rossby waves. The β-induced mechanical–Coriolis oscillation frequency can be succinctly expressed as , where , and λ is the angle of a sloped surface along which the unbalanced flow crosses isobars, α is the angle of isobars with the barrier’s slope, and k is the wavenumber along the direction of the barrier’s contours.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference19 articles.

1. Die Theorie der aussertropischen Zyklonenbildung;Bjerknes;Meteor. Z.,1937

2. On the theory of cyclones;Bjerknes;J. Meteor.,1944

3. The modification of the strophic balance for changing pressure distribution, and its effect on rainfall;Brunt;Mem. Roy. Meteor. Soc.,1928

4. On a physical mechanism for Rossby wave propagation;Durran;J. Atmos. Sci.,1988

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3