Discussing sources of the β-term in a vorticity equation in rotating coordinates

Author:

Wang Xiuming,Liu Shijun,Tang Huan,Liu Hua

Abstract

In the study of atmospheric dynamics, the vorticity equation in a rotating coordinate system plays a crucial role. However, a paradox arises when one considers the term related to spatial variations in Coriolis parameters known as the “β-term”. The β-term should not appear in the vorticity equation because the three-dimensional (3D) planetary vorticity is a constant vector. However, it is always in the vorticity equation. In this article, the source of the β-term in different rotating coordinates are investigated. The results show that in the spherical coordinate system, the β-term comes from the directions changing of one of the unit vectors (j) with the spatial position and originates from the tilting term. By contrast, in the height coordinate system, the β-term cannot be derived from the tilting term as the individual changes of the coordinate frames with time are omitted, Instead it is proven to be related to the advection term. Although the both coordinate systems are rotating coordinate systems, the sources of their β-terms differ due to the simplification levels of the coordinate systems. Although the 3D planetary vorticity is a constant vector in the spherical coordinate system, the conversions between its components are allowable and spatial derivatives of its components can be observed, eliminating the paradox of the β-term. However, in the height coordinate system, the 3D planetary vorticity vector is not a constant vector in order to maintain the conservation of the absolute angular momentum and mechanical energy. To account for the influence of the earth’s curvature on atmospheric motion, the β-term of the Coriolis parameters varying with the latitude appears. So, the origin of the β-term paradox proposed in the height coordinate system comes from a misunderstanding of the physical constraints of the height coordinate system.

Funder

National Natural Science Foundation of China

Publisher

Frontiers Media SA

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3