Affiliation:
1. University of Washington, Seattle, Washington
Abstract
Abstract
The internal variability and predictability of idealized three-dimensional hurricanes is investigated using 100-day-long, statistically steady simulations in a compressible, nonhydrostatic, cloud-resolving model. The equilibrium solution is free of the confounding effects of initial conditions and environmental variability in order to isolate the “intrinsic” characteristics of the hurricane.
The variance of the axisymmetric tangential velocity is dominated by two patterns: one characterized by a radial shift of the maximum wind, and the other by intensity modulation at the radius of maximum wind. These patterns are associated with convectively coupled bands of anomalous wind speed that propagate inward from large radii with a period of roughly 5 days, the strongest of which is associated with an eyewall replacement cycle. The asymmetric tangential wind is strongest radially inward of the radius of maximum wind. On average, asymmetries decelerate the azimuthal-mean tangential wind at the radius of maximum wind and accelerate it along the inner edge of eyewall.
Predictability of axisymmetric storm structure is measured through the autocorrelation e-folding time and linear inverse modeling. Results from both methods reveal an intrinsic predictability time scale of about 2 days. The predictability and variability of the axisymmetric storm structure are consistent with recently obtained results from idealized axisymmetric hurricane modeling.
Publisher
American Meteorological Society
Cited by
39 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献