The Consequences of Surface-Exchange Coefficient Uncertainty on an Otherwise Highly Predictable Major Hurricane

Author:

Nystrom Robert G.1,Judt Falko1

Affiliation:

1. a National Center for Atmospheric Research, Boulder, Colorado

Abstract

Abstract In addition to initial conditions, uncertainty in model physics can also influence the practical predictability of tropical cyclones. In this study, the influence that various magnitudes of uncertainty in the surface exchange coefficients of momentum (Cd) and enthalpy (Ck) can have on an otherwise highly predictable major hurricane (Hurricane Patricia) is compared with that resulting from climatological environmental initial condition uncertainty and the intrinsic limit for this case. As the systematic uncertainty in Cd and Ck is reduced from 40% to 1%, the simulated uncertainty in the intensity and structure is substantially reduced and approaches the intrinsic limit when uncertainty is reduced to 1%. In addition, the forecasted intensity and structure uncertainty only becomes less than that resulting from climatological environmental initial condition uncertainty once the systematic uncertainty in Cd and Ck is reduced to ∼10%, highlighting the strong influence of model error in limiting TC predictability. If Cd and Ck are perturbed stochastically, instead of systematically, it is shown that the influence on the simulated intensity and structure is negligible and nearly identical to the intrinsic limit, regardless of the magnitude of the stochastic Cd and Ck perturbations. While the magnitude of the stochastic Cd and Ck perturbations are comparable to the systematic perturbations, the stochastic perturbations are shown to not substantially perturb the time-integrated inner-core fluxes of momentum or enthalpy that predominantly determine simulated tropical cyclone intensity. Last, it is shown that the kinetic energy error growth behavior varies with the radius, azimuthal wavenumber, and ensemble design. Significance Statement The air–sea energy exchange beneath hurricanes is highly uncertain but strongly influences intensity. In this study, the influences of different magnitudes of surface-exchange coefficient uncertainty on the simulated intensity of an intense hurricane is compared with that resulting from environmental initial condition uncertainty and the intrinsic predictability limit. The main takeaway is that current surface-exchange coefficient uncertainties result in larger intensity uncertainty than environmental initial condition uncertainty, and substantial improvements in predictions are possible if current surface-exchange coefficient uncertainties are reduced. Furthermore, it is shown that randomly perturbing the surface-exchange coefficients at each point in space and time is not the best approach to account for the influences of this uncertain physical process on hurricane prediction because it has minimal influence on the simulated intensity.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference51 articles.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3