Ice Cloud Particle Size Distributions and Pressure-Dependent Terminal Velocities from In Situ Observations at Temperatures from 0° to −86°C

Author:

Heymsfield Andrew J.1,Schmitt Carl1,Bansemer Aaron1

Affiliation:

1. NCAR, Boulder, Colorado

Abstract

Abstract The primary goal of this study is to derive ice particle terminal velocities from micron to centimeter sizes and for atmospheric pressures covering the range 200–1000 hPa from data spanning a wide range of locations, temperatures, and altitudes and to parameterize the results for use in cloud through cloud models. The study uses data from 10 field programs spanning the temperature range −86° to 0°C and encompassing a total of about 800 000 km of cloud horizontal pathlengths and includes measurements of ice particle size distributions (PSDs) and direct measurements of the ice water content (IWC). The necessary ice particle variables are derived using variables that are interconnected rather than varying independently from observations reported in the literature. A secondary goal of the study is to quantify the properties of ice cloud particle ensembles over a wide range of temperatures to further the understanding of how ice particle ensembles and ice clouds develop. Functional forms for the PSDs and mass– and area–dimensional relationships are developed from the observations and summarized in a table. The PSDs are found to be nearly exponential at temperatures from about −40° to −10°C although deviations from exponentiality are noted outside of this range. It is demonstrated that previous pressure-dependent corrections to ice fall speeds lead to overestimated terminal velocities for particles smaller than 1 mm, particularly so for sizes below 100 μm, with consequent effects on modeled lifetimes of cold ice clouds.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference54 articles.

1. In situ, airborne instrumentation: Addressing and solving measurement problems in ice clouds;Baumgardner;Bull. Amer. Meteor. Soc.,2012

2. Improved measurements of the ice water content in cirrus using a total-water probe;Brown;J. Atmos. Oceanic Technol.,1995

3. The ability of the Small Ice Detector (SID-2) to characterize cloud particle and aerosol morphologies obtained during flights of the FAAM BAe-146 research aircraft;Cotton,2010

4. Comparisons of in situ measurements of cirrus cloud ice water content;Davis;J. Geophys. Res.,2007

5. Statistical properties of the normalized ice particle size distribution;Delanoë;J. Geophys. Res.,2005

Cited by 175 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3