The characteristics of cloud macro-parameters caused by the seeder–feeder process inside clouds measured by millimeter-wave cloud radar in Xi'an, China

Author:

Di Huige,Yuan Yun

Abstract

Abstract. The seeding effect of upper clouds on lower clouds affects the evolution of clouds, especially the seeding from upper ice clouds on lower stratiform clouds or convective clouds, which can stimulate the precipitation of lower clouds and even produce extreme precipitation. When seeders of the seeding cloud enter the feeding cloud, the interaction between cloud particles results in the change in macro- and micro-parameters of the feeding cloud. Based on the observation data of a ground-based Ka-band millimeter-wave cloud radar (MMCR) and microwave radiometer (MWR) in spring and autumn from 2021 to 2022, the seeder–feeder phenomenon among double-layer clouds in Xi'an, China, is studied. The study on 11 cases of seeder–feeder processes shows that the processes can be divided into three types by defining the height difference (HD) between the seeding cloud base and the feeding cloud top and the effective seeding depth (ESD). Through analysis of the reflectivity factor (Z) and the radial velocity (Vr) of cloud particles detected by the MMCR and on the retrieved cloud dynamics parameters (vertical velocity of airflow, Va, and terminal velocity of cloud particles, Vf), it is shown that the reflectivity factor and particle terminal velocity in the cloud are significantly enhanced during the seeder–feeder period for the three types of processes. But the enhancement magnitudes of the three seeder–feeder processes are different. The results also show that the impact of seeding on the feeding cloud is limited. The lower the height and thinner the thickness of the HD, the lower the height and thicker the thickness of the ESD. On the contrary, the higher the height and the thicker the thickness of the HD, the higher the height and the thinner the thickness of the ESD.

Publisher

Copernicus GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3