Regularized Logistic Models for Probabilistic Forecasting and Diagnostics

Author:

Bröcker Jochen1

Affiliation:

1. Max-Planck-Institut für Physik komplexer Systeme, Dresden, Germany

Abstract

Abstract Logistic models are studied as a tool to convert dynamical forecast information (deterministic and ensemble) into probability forecasts. A logistic model is obtained by setting the logarithmic odds ratio equal to a linear combination of the inputs. As with any statistical model, logistic models will suffer from overfitting if the number of inputs is comparable to the number of forecast instances. Computational approaches to avoid overfitting by regularization are discussed, and efficient techniques for model assessment and selection are presented. A logit version of the lasso (originally a linear regression technique), is discussed. In lasso models, less important inputs are identified and the corresponding coefficient is set to zero, providing an efficient and automatic model reduction procedure. For the same reason, lasso models are particularly appealing for diagnostic purposes.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference24 articles.

1. Essai de prévision méthodique du temps (An essay on methodical weather forecasting).;Besson;Ann. L’Observ. Munic. Ville Paris,1905

2. Verification of forecasts expressed in terms of probabilities.;Brier;Mon. Wea. Rev.,1950

3. Reliability, sufficiency, and the decomposition of proper scores.;Bröcker;Quart. J. Roy. Meteor. Soc.,2009

4. Scoring probabilistic forecasts: The importance of being proper.;Bröcker;Wea. Forecasting,2007

5. Probabilistic forecasts and reproducing scoring systems.;Brown,1970

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Operational Evaluation of a Wildfire Air Quality Model from a Forecaster Point of View;Weather and Forecasting;2022-05

2. Statistical Forecasting;Statistical Methods in the Atmospheric Sciences;2019

3. Statistical Methods in the Atmospheric Sciences;2019

4. References;Statistical Methods in the Atmospheric Sciences;2019

5. Statistical postprocessing of ensemble global radiation forecasts with penalized quantile regression;Meteorologische Zeitschrift;2017-06-14

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3