Quantifying the Snowfall Detection Performance of the GPM Microwave Imager Channels over Land

Author:

You Yalei1,Wang Nai-Yu1,Ferraro Ralph2,Rudlosky Scott2

Affiliation:

1. Cooperative Institute for Climate and Satellites, Earth System Science Interdisciplinary Center, University of Maryland, College Park, College Park, Maryland

2. NOAA/NESDIS/STAR, College Park, Maryland

Abstract

Abstract This study uses Global Precipitation Measurement (GPM) Microwave Imager (GMI) and Ka-precipitation radar observations to quantify the snowfall detection performance for different channel (frequency) combinations. Results showed that the low-frequency-channel set contains limited snow detection information with a 0.34 probability of detection (POD). Much better performance is evident using the high-frequency channels (i.e., POD = 0.74). In addition, if only one high-frequency channel is allowed to be added to the low-frequency-channel set, adding the 183 ± 3 GHz channel presents the largest POD improvement (from 0.34 to 0.50). However, this does not imply that the water vapor is the key information for snowfall detection. Only using the high-frequency water vapor channels showed poor snowfall detection with POD at 0.13. Further analysis of all 8191 possible GMI channel combinations showed that the 166-GHz channels are indispensable for any channel combination with POD greater than 0.70. This suggests that the scattering signature, not the water vapor effect, is essential for snowfall detection. Data analysis and model simulation support this explanation. Finally, the GPM constellation radiometers are grouped into six categories based on the channel availability and their snowfall detection capability is estimated, using channels available on GMI. It is found that type-4 radiometer (all channels) has the best snowfall detection performance with a POD of 0.77. The POD values are only slightly smaller for the type-3 radiometer (high-frequency channels) and type-5 radiometer (all channels except 183 channels).

Funder

National Oceanic and Atmospheric Administration

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 58 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3