Hydrologic Assessment of IMERG Products Across Spatial Scales Over Iowa

Author:

Seo Bong-Chul1ORCID,Quintero Felipe1,Krajewski Witold F.1

Affiliation:

1. a Iowa Flood Center and IIHR—Hydroscience and Engineering, The University of Iowa, Iowa City, Iowa

Abstract

Abstract IMERG provides state-of-the-art satellite-based precipitation estimates that combine observations from multiple satellite platforms. This study evaluates IMERG products by examining hydrologic simulations of streamflow at a range of spatial scales. The main objective of this study is to assess the predictive utility of the near-real-time product (IMERG-Early). The assessment also includes the IMERG-Final product that is not available in real time. The authors used MRMS precipitation estimates and USGS streamflow observation data as references for the precipitation and streamflow evaluations during a 5-yr period (2016–20). The precipitation evaluation results show that IMERG-Early yields significant overestimations, particularly during warm months, with higher variability in its conditional distributions, whereas the performance of IMERG-Final seems unbiased. The authors performed hydrologic simulations using the Iowa Flood Center’s Hillslope Link Model with three precipitation forcing products, i.e., MRMS, IMERG-Early, and IMERG-Final. The simulation results reveal that IMERG-Early leads to high hit and false alarm rates due to its overestimation in precipitation and has almost no skill, as measured by the overall performance metric Kling–Gupta efficiency (KGE), in streamflow prediction regarding basin scales ranging from 10 to 30 000 km2. This indicates that the product requires a bias correction before it is useful for real-time flood prediction. The streamflow prediction performance of IMERG-Final seems comparable to that of MRMS at spatial scales greater than 100 km2. This scale limitation is attributable to the IMERG’s product spatial resolution that is inadequate to capture the small-scale variability of precipitation.

Funder

Iowa Flood Center

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference76 articles.

1. Comparative assessment of snowfall retrieval from microwave humidity sounders using machine learning methods;Adhikari, A.,2020

2. Characterization of precipitation product errors across the United States using multiplicative triple collocation;Alemohammad, S. H.,2015

3. Assessing the accuracy and drought utility of long-term satellite-based precipitation estimation products using the triple collocation approach;Bai, X.,2021

4. Evaluation of IMERG and TRMM 3B43 monthly precipitation products over mainland China;Chen, F.,2016

5. On the estimation of radar rainfall error variance;Ciach, G. J.,1999

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3