Evaluation of Weather Radar with Pulse Compression: Performance of a Fuzzy Logic Tornado Detection Algorithm

Author:

Alberts Timothy A.1,Chilson Phillip B.1,Cheong B. L.2,Palmer R. D.1

Affiliation:

1. School of Meteorology, and Atmospheric Radar Research Center, Norman, Oklahoma

2. Atmospheric Radar Research Center, Norman, Oklahoma

Abstract

Abstract Trends in current weather research involve active phased-array radar systems that have several advantages over conventional radars with klystron or magnetron transmitters. However, phased-array radars generally do not have the same peak transmit power capability as conventional systems so they must transmit longer pulses to maintain an equivalent average power on target. Increasing transmits pulse duration increases range gate size but the use of pulse compression offers a means of recovering the otherwise lost resolution. To evaluate pulse compression for use in future weather radar systems, modifications to a weather radar simulator have been made to incorporate phase-coding into its functionality. Data derived from Barker-coded pulses with matched and mismatched filters were compared with data obtained from uncoded pulses to evaluate the pulse compression performance. Additionally, pulse compression was simulated using data collected from an experimental radar to validate the simulated results. The data derived from both experimental and simulated methods were then applied to a fuzzy logic tornado detection algorithm to examine the effects of the pulse compression process. It was found that the fuzzy logic process was sufficiently robust to maintain high levels of detection accuracy with low false alarm rates even though biases were observed in the pulse-compressed data.

Publisher

American Meteorological Society

Subject

Atmospheric Science,Ocean Engineering

Reference19 articles.

1. Tornado-warning performance in the past and future: A perspective from signal detection theory.;Brooks;Bull. Amer. Meteor. Soc.,2004

2. A time-series weather radar simulator based on high-resolution atmospheric models.;Cheong;J. Atmos. Oceanic Technol.,2008

3. Radar Signals: An Introduction to Theory and Application.;Cook,1993

4. Doppler Radar and Weather Observations.;Doviak,1993

5. Modifications to the research WSR-88D to obtain polarimetric data.;Doviak,2002

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3