A New Method to Estimate the Systematical Biases of Expendable Bathythermograph

Author:

Cheng Lijing1,Zhu Jiang1,Reseghetti Franco2,Liu Qingping3

Affiliation:

1. Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China

2. Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Lerici, Italy

3. China University of Mining and Technology, Beijing, China

Abstract

Abstract A new technique to estimate three major biases of XBT probes (improper fall rate, start-up transient, and pure temperature error) has been developed. Different from the well-known and standard “temperature error free” differential method, the new method analyses temperature profiles instead of vertical gradient temperature profiles. Consequently, it seems to be more noise resistant because it uses the integral property over the entire vertical profile instead of gradients. Its validity and robustness have been checked in two ways. In the first case, the new integral technique and the standard differential method have been applied to a set of simulated XBT profiles having a known fall-rate equation to which various combinations of pure temperature errors, random errors, and spikes have been added for the sake of this simulation. Results indicated that the single pure temperature error has little impact on the fall-rate coefficients for both methods, whereas with the added random error and spikes the simulation leads to better results with the new integral technique than with the standard differential method. In the second case, two sets of profiles from actual XBT versus CTD comparisons, collected near Barbados in 1990 and in the western Mediterranean (2003–04 and 2008–09), have been used. The individual fall-rate coefficients and start-up transient for each XBT profile, along with the overall pure temperature correction, have been calculated for the XBT profiles. To standardize procedures and to improve the terms of comparison, the individual start-up transient estimated by the integral method was also assigned and included in calculations with the differential method. The new integral method significantly reduces both the temperature difference between XBT and CTD profiles and the standard deviation. Finally, the validity of the mean fall-rate coefficients and the mean start-up transient, respectively, for DB and T7 probes as precalculated equations was verified. In this case, the temperature difference is reduced to less than 0.1°C for both datasets, and it randomly distributes around the null value. In addition, the standard deviation on depth values is largely reduced, and the maximum depth error computed with the datasets near Barbados is within 1.1% of its real value. Results also indicate that the integral method has a good performance mainly when applied to profiles in regions with either a very large temperature gradient, at the thermocline or a very small one, toward the bottom.

Publisher

American Meteorological Society

Subject

Atmospheric Science,Ocean Engineering

Reference30 articles.

1. Expendable bathythermograph (XBT) accuracy studies.;Anderson,1980

2. CSIRO cookbook for quality control of expendable bathythermograph (XBT) data.;Bailey,1994

3. Comparison of CTD and XBT temperature profiles.;Boedecker,2001

4. World Ocean Database 2005.;Boyer,2006

5. XBT/CTD comparisons.;Fang,2002

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Examining the Influence of Recording System on the Pure Temperature Error in XBT Data;Journal of Atmospheric and Oceanic Technology;2021-04

2. Correcting Biases in Historical Bathythermograph Data Using Artificial Neural Networks;Journal of Atmospheric and Oceanic Technology;2020-10-01

3. Assessment of Quality and Reliability of Measurements with XBT Sippican T5 and T5/20;Journal of Atmospheric and Oceanic Technology;2018-10

4. An Assessment of the XBT Fall-Rate Equation in the Southern Ocean;Journal of Atmospheric and Oceanic Technology;2018-04

5. XBT Science: Assessment of Instrumental Biases and Errors;Bulletin of the American Meteorological Society;2016-06-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3