Correcting Biases in Historical Bathythermograph Data Using Artificial Neural Networks

Author:

Bagnell Aaron1,DeVries Timothy2

Affiliation:

1. Interdepartmental Graduate Program in Marine Science, University of California, Santa Barbara, Santa Barbara, California

2. Department of Geography, University of California, Santa Barbara, Santa Barbara, California

Abstract

AbstractHistorical estimates of ocean heat content (OHC) are important for understanding the climate sensitivity of the Earth system and for tracking changes in Earth’s energy balance over time. Prior to 2004, these estimates rely primarily on temperature measurements from mechanical and expendable bathythermograph (BT) instruments that were deployed on large scales by naval vessels and ships of opportunity. These BT temperature measurements are subject to well-documented biases, but even the best calibration methods still exhibit residual biases when compared with high-quality temperature datasets. Here, we use a new approach to reduce biases in historical BT data after binning them to a regular grid such as would be used for estimating OHC. Our method consists of an ensemble of artificial neural networks that corrects biases with respect to depth, year, and water temperature in the top 10 m. A global correction and corrections optimized to specific BT probe types are presented for the top 1800 m. Our approach differs from most prior studies by accounting for multiple sources of error in a single correction instead of separating the bias into several independent components. These new global and probe-specific corrections perform on par with widely used calibration methods on a series of metrics that examine the residual temperature biases with respect to a high-quality reference dataset. However, distinct patterns emerge across these various calibration methods when they are extrapolated to BT data that are not included in our cross-instrument comparison, contributing to uncertainty that will ultimately impact estimates of OHC.

Funder

National Science Foundation

Publisher

American Meteorological Society

Subject

Atmospheric Science,Ocean Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3