The Impact of Data Assimilation Length Scales on Analysis and Prediction of Convective Storms

Author:

Lange Heiner1,Craig George C.1

Affiliation:

1. Hans Ertel Centre for Weather Research, Data Assimilation Branch, Ludwig-Maximilians-Universität München, Munich, Germany

Abstract

Abstract An idealized convective test bed for the local ensemble transform Kalman filter (LETKF) is set up to perform storm-scale data assimilation of simulated Doppler radar observations. Convective systems with lifetimes exceeding 6 h are triggered in a doubly periodic domain. Perfect-model experiments are used to investigate the limited predictability in precipitation forecasts by comparing analysis schemes that resolve different length scales. Starting from a high-resolution reference scheme with 8-km covariance localization and observations with 2-km resolution on a 5-min cycle, an experimental hierarchy is set up by successively choosing a larger covariance localization radius of 32 km, observations that are horizontally averaged by a factor of 4, a coarser resolution in the calculation of the analysis weights, and a cycling interval of 20 min. After 3 h of assimilation, the high-resolution analysis scheme is clearly superior to the configurations with coarser scales in terms of RMS error and field-oriented measures. The difference is associated with the observation resolution and a larger localization radius required for filter convergence with coarse observations. The high-resolution analysis leads to better forecasts for the first hour, but after 3 hours, the forecast quality of the schemes is indistinguishable. The more rapid error growth in forecasts from the high-resolution analysis appears to be associated with a limited predictability of the small scales, but also with gravity wave noise and spurious convective cells. The latter suggests that the field is in some sense less balanced, or less consistent with the model dynamics, than in the coarser-resolution analysis.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3