A Conservative Semi-Lagrangian Discontinuous Galerkin Scheme on the Cubed Sphere

Author:

Guo Wei1,Nair Ramachandran D.2,Qiu Jing-Mei1

Affiliation:

1. Department of Mathematics, University of Houston, Houston, Texas

2. National Center for Atmospheric Research, Boulder, Colorado

Abstract

Abstract The discontinuous Galerkin (DG) methods designed for hyperbolic problems arising from a wide range of applications are known to enjoy many computational advantages. DG methods coupled with strong-stability-preserving explicit Runge–Kutta discontinuous Galerkin (RKDG) time discretizations provide a robust numerical approach suitable for geoscience applications including atmospheric modeling. However, a major drawback of the RKDG method is its stringent Courant–Friedrichs–Lewy (CFL) stability restriction associated with explicit time stepping. To address this issue, the authors adopt a dimension-splitting approach where a semi-Lagrangian (SL) time-stepping strategy is combined with the DG method. The resulting SLDG scheme employs a sequence of 1D operations for solving multidimensional transport equations. The SLDG scheme is inherently conservative and has the option to incorporate a local positivity-preserving filter for tracers. A novel feature of the SLDG algorithm is that it can be used for multitracer transport for global models employing spectral-element grids, without using an additional finite-volume grid system. The quality of the proposed method is demonstrated via benchmark tests on Cartesian and cubed-sphere geometry, which employs nonorthogonal, curvilinear coordinates.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 49 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3